Computing the Hilbert Transform on the Real Line

نویسنده

  • J.A.C. WEIDEMAN
چکیده

We introduce a new method for computing the Hubert transform on the real line. It is a collocation method, based on an expansion in rational eigenfunctions of the Hubert transform operator, and implemented through the Fast Fourier Transform. An error analysis is given, and convergence rates for some simple classes of functions are established. Numerical tests indicate that the method compares favorably with existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Hilbert transform and its inverse

We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann–Hilbert problems via Plemelj’s lemma. Using this framework, we rederive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex ...

متن کامل

Approximation of the Hilbert Transform on the real line using Hermite zeros

The authors study the Hilbert Transform on the real line. They introduce some polynomial approximations and some algorithms for its numerical evaluation. Error estimates in uniform norm are given.

متن کامل

On a Boundary Value Problem in Subsonic Aeroelasticity and the Cofinite Hilbert Transform

We study a boundary value problem in subsonic aeroelasticity and introduce the cofinite Hilbert transform as a tool in solving an auxiliary linear integral equation on the complement of a finite interval on the real line R.

متن کامل

The Poincare - Bertrand Formula for the Hilbert Transform

The Poincare-Bertrand formula for the finite Hilbert transform will be proved by applying the properties of Chebyshev polynomial functions. That formulation will then be extended to the Hilbert transform both for the entire real line and the one-dimensional torus.

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010